
Pré-requis : intégration par parties, suites numériques équivalentes, calcul de développements limités, séries numériques (séries de Riemann, règle des équivalents).
1 – Une factorielle, c’est grand… mais grand comment ?
Si vous n’avez pas encore lu l’article « Qu’est-ce qu’une factorielle ? Partie 1 », lisez-le 🙂
On y trouve, pour l’essentiel, une interprétation étonnante de l’entier
dont la taille gigantesque dépasse largement ce que l’intuition nous permet d’appréhender.
Je vous propose maintenant d’aller rendre visite à une formule célèbre, attribuée au mathématicien écossais James Stirling (1692-1770), qui donne une estimation asymptotique de
lorsque
tend vers l’infini :
![]()
![Rendered by QuickLaTeX.com \[\boxed{\lim_{n\rightarrow\infty}\frac{n!\thinspace e^{n}}{n^{n}\sqrt{n}}=\sqrt{2\pi}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-ea4f60be4d6b7d519572a316a14ebc4a_l3.png)
😯 Une formule pour le moins surprenante !… En effet, la factorielle d’un entier
est par définition égale au produit des entiers de 1 à
: c’est donc une quantité définie très simplement et de manière purement arithmétique. Pourtant, lorsqu’on se penche sur son comportement à l’infini, on voit débarquer deux « stars » de l’analyse mathématique, à savoir les nombres π et e.
Afin d’établir ce résultat, intéressons-nous au préalable à une suite d’intégrales…
La
ème intégrale de Wallis, notée
est définie pour tout
par :
![Rendered by QuickLaTeX.com \[\boxed{W_{n}=\int_{0}^{\pi/2}\sin^{n}\left(t\right)\thinspace dt}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-b7d9ef6e2a523e779a71ad34c11b3f28_l3.png)
Dans ce qui suit, nous allons :
- d’une part, obtenir un équivalent de
lorsque
tend vers l’infini, - d’autre part, établir une formule explicite pour
qui fait intervenir des factorielles.
C’est en combinant ces deux points que nous démontrerons la formule de Stirling.
2 – Relation de récurrence pour les intégrales de Wallis
On commence par mettre en évidence une relation de récurrence vérifiée par la suite
Pour cela, on intègre par parties pour
en posant :
![]()
![]()
ce qui donne :
![]()
Le terme entre crochets est nul puisque
Par ailleurs, en remplaçant
par
dans la dernière intégrale, il vient :
![]()
Nous avons prouvé que, pour tout
:
(
) ![]()
Cette relation de récurrence ramène le calcul de
à celui de
puis de
… etc … et finalement de
(si
est pair) ou de
(sinon).
On calcule donc, une fois pour toutes :
![Rendered by QuickLaTeX.com \[\boxed{W_{0}=\int_{0}^{\pi/2}\thinspace dt=\frac{\pi}{2}}\qquad\text{et}\qquad\boxed{W_{1}=\int_{0}^{\pi/2}\sin\left(t\right)\thinspace dt=1}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-3f386a1cfa65732014f99b3259febd1e_l3.png)
après quoi, le calcul numérique de
Par exemple :
![]()
3 – Equivalent de la n-ème intégrale de Wallis
La suite
est décroissante. En effet, pour tout
:
![]()
Or d’une part
Il s’ensuit que, pour tout
:
![]()
![]()
![]()
Bref, on peut diviser chaque membre de l’encadrement précédent par
ce qui donne :
![]()
![]()
(
) ![Rendered by QuickLaTeX.com \[\fcolorbox{black}{myBlue}{$\displaystyle{\lim_{n\rightarrow\infty}\frac{W_{n}}{W_{n-1}}=1}$}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-bb3e5cf59b298583323231f20f1ce89a_l3.png)
Par ailleurs, en multipliant chaque membre de
par
on obtient :
![]()
(
) ![]()
![]()
![]()
![Rendered by QuickLaTeX.com \[\fcolorbox{black}{myBlue}{$\displaystyle{W_{n}\sim\sqrt{\frac{\pi}{2n}}}$}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-3b6e6f3072d39b684300ac049ce0193a_l3.png)
Cet équivalent indique une convergence « plutôt lente » vers 0 pour la suite
.
4 – Calcul explicite des intégrales de Wallis
En exploitant la relation de récurrence
on peut expliciter
en distinguant deux cas, selon la parité de
Intéressons-nous au cas où
est pair …
On calcule successivement :
![]()
ce qui laisse deviner, pour tout
![]()
Cette formule se prouve aisément par récurrence (non détaillé).
La fraction au second membre de
fait intervenir des produits d’entiers qui se suivent de
en
… Il ne reste donc pas grand chose à faire pour qu’apparaissent des factorielles !
On peut en effet multiplier le numérateur et le dénominateur de cette fraction par le produit ![]()
Ceci a pour effet de « boucher les trous » au numérateur et de faire apparaître la factorielle de
On tombe ainsi sur :
![]()
![Rendered by QuickLaTeX.com \[\fcolorbox{black}{myBlue}{$\displaystyle{W_{2p}=\frac{\left(2p\right)!\thinspace\pi}{2^{2p+1}\left(p!\right)^{2}}}$}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-b6be1517bf6319beea9d03f03ba7f33f_l3.png)
Par exemple :
![]()
Remarque 1
Ce calcul classique fait l’objet de l’exercice n° 2 de cette fiche d’exercices sur la factorielle. En liaison avec la formule de Stirling, on pourra aussi regarder l’exercice n° 5 de cette même fiche.
Remarque 2
Un calcul similaire montre que, pour tout
:
![Rendered by QuickLaTeX.com \[\boxed{W_{2p+1}=\frac{2^{2p}\left(p!\right)^{2}}{\left(2p+1\right)!}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-2ad962b1eebe93ab6ffcd4f685c54687_l3.png)
5 – La formule de Stirling
Comme cela a été indiqué en début d’article, nous souhaitons démontrer que :
![Rendered by QuickLaTeX.com \[\fcolorbox{black}{myBlue}{$\displaystyle{\lim_{n\rightarrow\infty}\frac{n!\thinspace e^{n}}{n^{n}\sqrt{n}}=\sqrt{2\pi}}$}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-99a117a4a38c8854872597692468e758_l3.png)
Pour cela, nous procéderons en deux temps :
- [Etape 1] Nous allons d’abord prouver que la suite de terme général
est convergente (étape 1-A) et que sa limite![Rendered by QuickLaTeX.com \[u_{n}=\frac{n!\thinspace e^{n}}{n^{n}\sqrt{n}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-6d947f194771aa78052cfe7f4dab8eb2_l3.png)
est non nulle (étape 1-B), - [Etape 2] ensuite, nous calculerons
en nous servant de ce que nous avons appris au sujet des intégrales de Wallis.
Pour des raisons de type « pédagogique », l’étape 1 sera traitée deux fois :
→ une première fois avec des outils de niveau « T+ » (c’est-à-dire de niveau Terminale avec un enseignement mathématique renforcé, mais avec une mise en œuvre technique supérieure à ce qui se pratique communément dans cette classe)
→ une seconde fois avec des outils de niveau 1ère / 2ème année d’enseignement supérieur (développements limités, séries numériques et règles usuelles de convergence), ce qui aura pour effet de raccourcir significativement la démonstration.
Détail étape 1-A (niveau T+) (cliquer pour déplier / replier)
Pour montrer que la suite
converge, il suffit de voir qu’elle est décroissante (comme elle est d’évidence minorée par
le célèbre théorème « toute suite réelle décroissante et minorée converge » pourra s’appliquer).
Pour cela, comparons à 1 le quotient de deux termes consécutifs. Pour tout
:

Il revient au même de déterminer le signe de
, c’est-à-dire de :
![]()
![]()
![Rendered by QuickLaTeX.com \[F'\left(t\right)=-\frac{1}{\left(t+\frac{1}{2}\right)^{2}}+\frac{1}{t}-\frac{1}{t+1}=\frac{-t\left(t+1\right)+\left(t+\frac{1}{2}\right)^{2}}{t\left(t+1\right)\left(t+\frac{1}{2}\right)^{2}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-7ba85c643a661e23d3774adb745316d6_l3.png)
![Rendered by QuickLaTeX.com \[F'\left(t\right)=\frac{1}{4t\left(t+1\right)\left(t+\frac{1}{2}\right)^{2}}>0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-0c727d3531f8b4c97f6e2263227a9638_l3.png)
![]()
![]()
Détail étape 1-B (niveau T+) (cliquer pour déplier / replier)
Nous allons avoir recours à un :
Lemme
Pour tout
:
![]()
La preuve de ce lemme est reportée en ANNEXE.
Repartons de la formule
établie plus haut. Pour tout
:
![]()
Nous allons minorer cette expression, ce qui donnera (après sommation télescopique), une minoration de ![]()
Nous constaterons qu’il est possible de minorer
par une certaine constante ![]()
Il en résultera une minoration de
par une constante strictement positive (à savoir
), d’où la non-nullité de la limite ![]()
Il faut à présent mettre les mains dans le cambouis …
La formule ci-dessus peut s’écrire :
![]()
Donc, d’après le lemme :
![Rendered by QuickLaTeX.com \[\ln\left(u_{n+1}\right)-\ln\left(u_{n}\right)\geqslant1-\left(n+\frac{1}{2}\right)\left(\frac{1}{n+1}+\frac{1}{2\left(n+1\right)^{2}}+\frac{1}{3\left(n+1\right)^{3}\left(1-\frac{1}{n+1}\right)}\right)\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-20373bbb9d303045f33ed023a37adafc_l3.png)
![]()
![]()
![]()
![]()
![]()
Détail étapes 1-A & 1-B (niveau Sup) (cliquer pour déplier / replier)
Pour qu’une suite
de réels strictement positifs converge vers une limite
non nulle, il suffit que la suite
soit convergente. En effet, en notant
on aura (par continuité de la fonction exponentielle) : ![]()
Par ailleurs, pour qu’une suite
soit convergente, il suffit que la série
le soit. En effet, par télescopage des termes :
![Rendered by QuickLaTeX.com \[\forall n\geqslant1,\;a_{n}=a_{1}+\sum_{k=1}^{n-1}\left(a_{k+1}-a_{k}\right)\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-e42e9fff11214ab55823be3017f7c0d9_l3.png)
![Rendered by QuickLaTeX.com \[\frac{u_{n+1}}{u_{n}}=e\thinspace\left(\frac{n}{n+1}\right)^{n+\frac{1}{2}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-105e2c14eb134730b0afb8b7e6c5cace_l3.png)
→ [voir détail 1A niveau T+, pour le calcul détaillé]
Donc :
![]()
En utilisant le développement limité de
au voisinage de
à l’ordre
on constate que :
![]()
![Rendered by QuickLaTeX.com \[\boxed{\ln\left(\frac{u_{n+1}}{u_{n}}\right)\sim-\frac{1}{12n^{2}}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-eab1ee55a1375541772368bbfbbf5ca0_l3.png)
Ceci prouve, comme souhaité, que la série
Détail étape 2 (niveau Sup) (cliquer pour déplier / replier)
En combinant les résultats établis à la section 3 et à la section 4, on obtient l’équivalent suivant (lorsque
tend vers
) :
![]()
Par ailleurs, vu que
la convergence de la suite
vers
peut s’écrire :
![]()
En injectant cette dernière relation dans
on trouve :
![Rendered by QuickLaTeX.com \[\frac{\lambda\left(\frac{2p}{e}\right)^{2p}\sqrt{2p}\pi}{2^{2p+1}\left(\lambda\left(\frac{p}{e}\right)^{p}\sqrt{p}\right)^{2}}\sim\frac{1}{2}\sqrt{\frac{\pi}{p}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-a3e3d19ae96fb00e08debccbdc715696_l3.png)
![Rendered by QuickLaTeX.com \[\frac{\pi}{2\lambda}\sqrt{\frac{2}{p}}\sim\frac{1}{2}\sqrt{\frac{\pi}{p}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-9099e76759273194f7f7f2d63a085cb1_l3.png)
La jolie formule de Stirling est établie :
![]()
😅 😅 Pfffouh !

6 – Annexe : preuve du lemme
Voici, comme promis, une démonstration … et même deux, pour le :
Lemme
Pour tout
:
![]()
Preuve 1 – Niveau T+ (cliquer pour déplier / replier)
Posons pour tout
:
![]()
![]()
Comme
on voit que
pour tout ![]()
Preuve 2 – Niveau Sup (cliquer pour déplier / replier)
On sait que, pour tout
:
![Rendered by QuickLaTeX.com \[-\ln\left(1-t\right)=\sum_{n=1}^{\infty}\frac{t^{n}}{n}=t+\frac{t^{2}}{2}+\sum_{n=3}^{\infty}\frac{t^{n}}{n}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-79e65dac292891021d73567ba16c6c4b_l3.png)
![Rendered by QuickLaTeX.com \[-\ln\left(1-t\right)\leqslant t+\frac{t^{2}}{2}+\frac{1}{3}\sum_{n=3}^{\infty}t^{n}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-98241e845cb06d79faaa5ceeec92634a_l3.png)
![]()
Vos questions ou remarques seront toujours les bienvenues. Vous pouvez laisser un commentaire ci-dessous ou bien passer par le formulaire de contact.
