Le célèbre « petit théorème de Fermat » stipule que, si (ensemble des nombres premiers), alors pour tout entier naturel :
La réciproque de ce théorème est fausse, car il existe des entiers naturels non premiers mais vérifiant pour tout .
Le plus petit tel entier est 561.
Sauriez-vous prouver qu’effectivement, la congruence est vérifiée pour tout ?
Une solution est disponible ici
Partager cet article