Challenge 15 : la suite des non-multiples de 3
Challenge n° 15 de Math-OS : La suite des non-multiples de 3. Il est facile d'énumérer les premiers termes... Mais quel est le n-ème ?
Challenge n° 15 de Math-OS : La suite des non-multiples de 3. Il est facile d'énumérer les premiers termes... Mais quel est le n-ème ?
Challenge n° 14 de Math-OS : un calcul élémentaire de probabilité dans un contexte arithmétique.
Comment s'y prendre pour définir, dans divers contextes, une application linéaire ? Cette question est ici abordée en détail et illustrée d'exemples.
Challenge n° 13 de Math-OS : Une formule sommatoire pour la somme des racines carrées entières des entiers de 1 à n^2 - 1.
Une introduction au calcul intégral. Les approches géométrique (aire "sous la courbe") et analytique (primitives) sont expliquées et illustrées d'exemples.
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence (partie 2).
En mathématiques, le principe des tiroirs est un outil puissant, en dépit de sa simplicité apparente. Cet article en présente diverses applications, de difficultés graduées.
Cet article présente quelques variantes classiques du raisonnement par récurrence, ainsi que des exemples variés, sélectionnés notamment pour leur élégance.
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence.
Challenge n° 12 de Math-OS : Soient deux réels dont la somme et le produit sont entiers. La somme de leurs puissances n-èmes est-elle entière pour tout n entier naturel ?