Exercices sur la récurrence – 02
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence (partie 2).
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence (partie 2).
En mathématiques, le principe des tiroirs est un outil puissant, en dépit de sa simplicité apparente. Cet article en présente diverses applications, de difficultés graduées.
Cet article présente quelques variantes classiques du raisonnement par récurrence, ainsi que des exemples variés, sélectionnés notamment pour leur élégance.
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence.
Challenge n° 12 de Math-OS : Soient deux réels dont la somme et le produit sont entiers. La somme de leurs puissances n-èmes est-elle entière pour tout n entier naturel ?
Cet article de vulgarisation présente l'une des principales techniques de démonstration utilisées en mathématiques : la preuve par récurrence.
Le challenge n° 11 de Math-OS pose la question suivante : étant donnés quatre entiers naturels a,b,c,d tels que $ad=bc$, se peut-il que a+b+c+d soit un nombre premier ?
La somme des diviseurs d'un entier naturel n supérieur à 1 est comprise entre n+1 et n(n+1)/2. Cet encadrement est grossier et peut être considérablement amélioré : c'est l'objet du challenge n° 10 de Math-OS.
Les nombres premiers sont les briques de la théorie des nombres entiers. Pendant 25 siècles, les plus grands esprits ont tenté d'en percer les mystères et de splendides résultats ont été découverts, mais beaucoup de propriétés nous échappent encore.
La somme des puissances p-èmes des entiers de 1 à n, lorsque p est impair, est multiple de n(n+1)/2. Le challenge n° 9 de Math-OS propose d'établir ce résultat.