Challenge 13 : partie entière et racine carrée
Challenge n° 13 de Math-OS : Une formule sommatoire pour la somme des racines carrées entières des entiers de 1 à n^2 - 1.
Challenge n° 13 de Math-OS : Une formule sommatoire pour la somme des racines carrées entières des entiers de 1 à n^2 - 1.
Une introduction au calcul intégral. Les approches géométrique (aire "sous la courbe") et analytique (primitives) sont expliquées et illustrées d'exemples.
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence (partie 2).
En mathématiques, le principe des tiroirs est un outil puissant, en dépit de sa simplicité apparente. Cet article en présente diverses applications, de difficultés graduées.
Neuf exercices de difficulté graduée sur la notion de preuve par récurrence.
Challenge n° 12 de Math-OS : Soient deux réels dont la somme et le produit sont entiers. La somme de leurs puissances n-èmes est-elle entière pour tout n entier naturel ?
Le challenge n° 11 de Math-OS pose la question suivante : étant donnés quatre entiers naturels a,b,c,d tels que $ad=bc$, se peut-il que a+b+c+d soit un nombre premier ?
La somme des diviseurs d'un entier naturel n supérieur à 1 est comprise entre n+1 et n(n+1)/2. Cet encadrement est grossier et peut être considérablement amélioré : c'est l'objet du challenge n° 10 de Math-OS.
La somme des puissances p-èmes des entiers de 1 à n, lorsque p est impair, est multiple de n(n+1)/2. Le challenge n° 9 de Math-OS propose d'établir ce résultat.
Neuf exercices de difficulté graduée sur les nombres premiers.