
L’étude des suites de Cauchy et des espaces complets figurait autrefois aux programmes de mathématiques du 1er cycle universitaire et des classes préparatoires scientifiques. Ce n’est plus le cas aujourd’hui, ce que certains (j’en suis) peuvent déplorer. Voir à ce sujet cet échange (qui remonte à 2015) sur le site du Images des mathématiques du CNRS.
Le présent article est écrit à l’intention de celles et ceux qui souhaiteraient s’initier à ce sujet passionnant, afin d’élargir leur point de vue sur les questions d’analyse réelle.
1 – La définition de la convergence ne suffit pas
Commençons par le commencement : que signifie qu’une suite réelle est convergente ?
Définition
Une suite réelle
est dite convergente lorsqu’il existe un nombre réel
tel que l’écart entre
(le
ème terme de la suite
et
devient arbitrairement petit, à partir d’un certain rang.
En symboles :
![Rendered by QuickLaTeX.com \[\boxed{\begin{array}{c}\exists L\in\mathbb{R};\thinspace\forall\epsilon>0,\exists N\in\mathbb{N};\thinspace\forall n\in\mathbb{N},\\n\geqslant N\Rightarrow\left|u_{n}-L\right|\leqslant\epsilon\\\end{array}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-b9e13d7a27be356d7549f5de732f771e_l3.png)
On peut prouver l’unicité d’un tel nombre
(voir l’encadré ci-dessous). En cas d’existence, on dit que
est la limite de la suite
qu’on note au choix
ou bien ![]()
Unicité de la limite (cliquer pour déplier / replier)
Supposons que la suite
converge vers
et vers ![]()
Etant donné
il existe un couple
d’entiers naturels tel que :
![Rendered by QuickLaTeX.com \[\begin{array}{cc}\forall k\geqslant N, & \left|u_{k}-L\right|\leqslant\frac{\epsilon}{2}\\\\\forall k\geqslant N', & \left|u_{k}-L'\right|\leqslant\frac{\epsilon}{2}\end{array}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-ac8269e1d14218374629c660d03c5be7_l3.png)

![]()
Un constat s’impose :
Si l’on veut établir la convergence d’une suite réelle, en appliquant strictement la définition, alors il faut connaître à l’avance la valeur de la limite.
Dans certains cas simples, ce n’est pas gênant …
Exemple 1
Supposons qu’on veuille établir la convergence de la suite de terme général :
![]()
On commence par ré-écrire cette expression sous une forme plus maniable.
Pour tout
:

Il reste à établir cela rigoureusement, en utilisant la définition de la convergence.
On se donne un réel
et l’on tâche de montrer que :
![]()
On peut observer que :

![]()
![]()
![]()
On constate que :
![]()
Mais en général, les choses ne sont pas aussi simples …
Exemple 2
Considérons maintenant la suite de terme général :
![Rendered by QuickLaTeX.com \[S_{n}=\sum_{k=0}^{n}\frac{\cos\left(k^{2}\right)}{2^{k}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-66fce1e68980e95ca94878441ea9cde4_l3.png)
Et à supposer qu’elle converge, la valeur de sa limite n’est pas claire non plus …
L’idéal serait un outil permettant d’affirmer la convergence d’une suite, mais sans qu’il soit nécessaire de deviner à l’avance la limite.
Bonne nouvelle : cet outil existe !
Il a été indépendamment découvert / inventé par B. Bolzano et A-L. Cauchy, dans la première moitié du XIXème siècle.


2 – Le critère de Cauchy
Définition
Une suite réelle
est de Cauchy lorsque l’écart entre deux termes devient arbitrairement petit à partir d’un certain rang.
En symboles :
![Rendered by QuickLaTeX.com \[\boxed{\begin{array}{c}\forall\epsilon>0,\exists N\in\mathbb{N},\forall\left(p,q\right)\in\mathbb{N}^{2},\\\left(p\geqslant N\text{ et }q\geqslant N\right)\Rightarrow\left|u_{p}-u_{q}\right|\leqslant\epsilon\end{array}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-bebcf41bf3a8ede8ceab4dd2f59afed6_l3.png)
On peut reformuler cette condition sous la forme :
![]()
Il est facile de voir que :
Proposition
Toute suite réelle convergente est de Cauchy.
Preuve (cliquer pour déplier / replier)
Soit
une suite réelle convergente, de limite
Etant donné
il existe
tel que :
![]()

Mais le plus intéressant réside dans la réciproque, que nous admettrons dans cet article :
Théorème (critère de Cauchy)
Toute suite réelle de Cauchy est convergente.
Dans son cours d’analyse de 1821, Cauchy considérait que le critère qui porte aujourd’hui son nom était clairement équivalent à la convergence. Pourtant, il n’y avait là rien d’évident … mais surtout : le concept précis de nombre réel n’avait pas encore été défini ! Il fallait pour cela attendre encore quelques décennies.
C’est principalement à Georg Cantor , mais aussi à Eduard Heine et Charles Meray que revient le mérite d’avoir élaboré, à la fin du XIXème siècle, une construction rigoureuse du corps des réels et d’avoir, par là-même, fourni une démonstration de l’équivalence entre la définition de la convergence et le critère de Cauchy.
Les détails d’une telle construction sont brièvement évoqués dans le lexique mathématique.
Reprenons la suite
définie à la fin de la section précédente :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N},\thinspace S_{n}=\sum_{k=0}^{n}\frac{\cos\left(k^{2}\right)}{2^{k}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-eebaf4d2a126f74fe09d3952b8869178_l3.png)
Pour tout couple
tel que
:
![Rendered by QuickLaTeX.com \[S_{q}-S_{p}=\sum_{k=p+1}^{q}\frac{\cos\left(k^{2}\right)}{2^{k}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-79ca42ac8bcbb0cb9cd938cd20c519e9_l3.png)
![Rendered by QuickLaTeX.com \[\left|S_{q}-S_{p}\right|\leqslant\sum_{k=p+1}^{q}\frac{\left|\cos\left(k^{2}\right)\right|}{2^{k}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-f381884bdf45e074d43cdcec758eb906_l3.png)
![Rendered by QuickLaTeX.com \[\left|S_{q}-S_{p}\right|\leqslant\sum_{k=p+1}^{q}\frac{1}{2^{k}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-d6defe02ef88c35c69729746aeb0f8af_l3.png)

Bref, la suite
est de Cauchy et donc, elle converge (mais on ne sait pas trop vers quoi).
Cet exemple se généralise largement : voir la section 7.

Avant de quitter cette section, signalons une confusion fréquente.
Pour une suite réelle
le fait que
soit de Cauchy n’est pas équivalent à
(
) ![]()
Par exemple, la suite de terme général :
![Rendered by QuickLaTeX.com \[H_{n}=\sum_{k=1}^{n}\frac{1}{k}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-1e9e62ff52597157f7ef82d4b070212a_l3.png)
- d’une part, en notant
la constante d’Euler, pour tout
fixé, on a lorsque
:
donc :![Rendered by QuickLaTeX.com \begin{equation*}\begin{split}0<H_{n+p}-H_{n} & = \ln\left(n+p\right)+\gamma+o\left(1\right)-\left[\ln\left(n\right)+\gamma+o\left(1\right)\right]\\ & = \ln\left(1+\frac{p}{n}\right)+o\left(1\right) \end{split}\end{equation*}](https://math-os.com/wp-content/ql-cache/quicklatex.com-1de15467514ab4c3caa3a6eff09dd3ce_l3.png)
![Rendered by QuickLaTeX.com \[\lim_{n\rightarrow\infty}\left(H_{n+p}-H_{n}\right)=0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-1de0f3625b18d1cef0a8b36862f7e9c5_l3.png)
- et d’autre part, pour tout
:![Rendered by QuickLaTeX.com \[H_{2n}-H_{n}=\sum_{k=n+1}^{2n}\frac{1}{k}>\frac{1}{2}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-a81dfaefe97d22f18f23d9f92114acb6_l3.png)
3 – Limite monotone
L’énoncé suivant, qui est admis en fin de lycée, est très utile. C’est le théorème de la limite monotone, en abrégé TLM :
TLM
Toute suite réelle, croissante et majorée, est convergente.
Bien entendu, toute suite réelle décroissante et minorée est aussi convergente (on le voit aussitôt en appliquant le TLM à la suite opposée).
Comme expliqué plus haut, le critère de Cauchy permet de prouver la convergence (éventuelle) d’une suite réelle, sans avoir à connaître sa limite à l’avance. Le TLM présente visiblement le même avantage. On pourrait donc penser que, tous comptes faits, le critère de Cauchy est un gadget superflu. C’est inexact, pour deux raisons :
- Contrairement au critère de Cauchy qui donne une condition nécessaire et suffisante de convergence (c’est d’ailleurs le sens du mot critère) — le TLM ne donne qu’une condition suffisante (et non nécessaire) de convergence. Par exemple, la suite de terme général
converge vers 0, mais n’est monotone à partir d’aucun rang. - Le TLM repose sur le théorème de la borne supérieure, qui repose sur le critère de Cauchy.
Théorème (de la borne supérieure)
Toute partie non vide et majorée de
possède une borne supérieure (c’est-à-dire un plus petit majorant).
La preuve de ce résultat est reportée en annexe. Pour le moment, démontrons le TLM.
Preuve du TLM (cliquer pour déplier / replier)
Soit
une suite réelle croissante et majorée. L’ensemble
est une partie de
non vide et majorée, donc possède une borne supérieure ![]()
Etant donné
le réel
est le plus petit majorant de
donc
n’est pas un majorant de cet ensemble. Ceci signifie qu’il existe un élément de
strictement supérieur à ![]()
Autrement dit :
![]()
Mais d’une part,
est croissante donc
pour tout ![]()
Et d’autre part,
(et a fortiori
) pour tout
puisque
est un majorant de
Ainsi :
![]()
On a prouvé que toute suite réelle croissante et majorée, converge vers la borne supérieure de l’ensemble de ses termes.
4 – Le théorème du point fixe de Picard
Vous avez peut-être déjà observé, en jouant avec une calculette, qu’en partant d’un quelconque nombre strictement positif et en appuyant plusieurs fois de suite sur la touche racine carrée, la valeur affichée semble converger vers 1.
L’illustration dynamique ci-dessous permet de visualiser ce phénomène.
Illustration dynamique
Le graphe rouge est celui de la fonction racine carrée. La droite bleue est la première bissectrice, d’équation ![]()
Le slider permet de choisir un nombre positif
En pressant plusieurs fois sur le bouton SQRT on déclenche le calcul des premiers termes de la suite définie par :
![]()
La dernière valeur calculée est affichée sous le slider. C’est l’abscisse du petit spot vert, visible à l’extrémité de la ligne polygonale blanche.
Les boutons ZIN et ZOUT permettent d’effectuer un zoom avant / arrière.
Une pression sur RESET remet tous les paramètres à leurs valeurs d’origine.
On verra, en fin de section, comment traiter cet exemple de manière directe ou bien comme cas particulier du théorème de Picard ci-dessous.
Considérons un intervalle
non trivial (c’est-à-dire de longueur non nulle), une application
et un réel ![]()
On peut définir une suite en itérant
à partir de
Cela consiste à poser :
(✯) ![Rendered by QuickLaTeX.com \[\boxed{\left\{ \begin{array}{c}u_{0}=s\\\\\forall n\in\mathbb{N},u_{n+1}=f\left(u_{n}\right)\end{array}\right.}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-19876a747ffd66b73b47f6b3ec7e34f7_l3.png)
➡ Une telle suite n’a aucune raison de converger, même si
est continue. Par exemple, si l’on choisit :
![Rendered by QuickLaTeX.com f:\left[0,1\right]\rightarrow\left[0,1\right],\thinspace t\mapsto1-t](https://math-os.com/wp-content/ql-cache/quicklatex.com-5b3916c072c00ddd976578d68a995930_l3.png)
tel que 
alors, pour tout
:
![]()
➡ Si la suite
converge, sa limite dépend en général du choix de
Considérons par exemple :
Dans ce cas (peu passionnant, j’en conviens), la suite
est constante (donc convergente !) et sa limite est ![]()
➡ La nature (convergence ou divergence) de la suite
peut dépendre de
C’est par exemple le cas lorsque :
![]()
Toutefois, et moyennant des hypothèses convenables, on peut garantir que :
- la suite
converge, quelle que soit la valeur de 
- sa limite est indépendante de

Théorème (Picard)
Soit
un intervalle fermé non trivial.
Si
est contractante, alors :
possède un unique point fixe 
- pour tout
la suite
définie par (✯) converge vers 
Expliquons d’abord le vocabulaire :
➡ l’hypothèse
fermé signifie que, pour toute suite convergente à termes dans
la limite de cette suite appartient à ![]()
➡ l’hypothèse
contractante signifie qu’il existe ![]()
tel que :
(
) ![]()
➡ un point fixe de
est un réel
vérifiant ![]()
La preuve ci-dessous repose sur la complétude de
c’est-à-dire sur le fait que toute suite réelle de Cauchy est convergente.
Preuve du théorème de Picard (cliquer pour déplier / replier)
Si
et
sont des points fixes de
alors :
![]()
Montrons simultanément l’existence d’un point fixe pour
et le fait que toute suite définie par itération de
converge vers cette valeur.
Soit
et soit
la suite définie par les relations :
![]()
![]()
C’est visiblement le cas pour
0.
Et si cette inégalité est vraie pour un certain
alors :

Maintenant, considérons deux entiers naturels
tels que
Alors :

![]()
Comme la suite géométrique
converge vers 0, alors étant donné
il existe certainement un entier naturel
tel que :
![]()
La suite
est donc de Cauchy.
Elle converge vers un certain réel
qui appartient à
puisque
est fermé.
Le caractère contractant de
entraînant sa continuité, on peut passer à la limite dans l’égalité
ce qui donne ![]()
Revenons maintenant à l’exemple de la racine carrée, évoqué au début de cette section.
Pour cet exemple simple, l’usage du théorème de Picard ne s’impose pas. En effet :
- chacun des intervalles
et
est stable par 
- pour tout
![Rendered by QuickLaTeX.com t\in\left[0,1\right],\thinspace\sqrt{t}\geqslant t](https://math-os.com/wp-content/ql-cache/quicklatex.com-24c00a81f4f24bcdfb8bdb068d9608c5_l3.png)
- pour tout

Il en résulte que la suite définie par
![]()
- croissante et majorée par 1, si
![Rendered by QuickLaTeX.com s\in\left]0,1\right]](https://math-os.com/wp-content/ql-cache/quicklatex.com-76f36af3d615301fee546aa19a7095b7_l3.png)
- décroissante et minorée par
si 
Elle converge donc dans tous les cas, et sa limite
vérifie la condition
(obtenue en passant à la limite dans la formule de récurrence).
Comme
(une suite croissante dont le premier terme est strictement positif ne peut pas converger vers 0, une suite minorée par 1 non plus), alors ![]()
Cela dit, on peut tout de même faire intervenir le théorème de Picard, ce qui apporte un éclairage un peu différent sur la même question.
Pour tout couple
de réels tels que
:
![]()
Ainsi, pour
la suite converge vers 1 (l’unique point fixe de ![]()
Et si
alors il existe un entier
tel que
car, dans le cas contraire, on aurait :
![]()
![]()
5 – Espaces métriques complets
Les notions de suite convergente et de suite de Cauchy ont été définies dans le contexte des nombres réels.
Ce cadre peut être considérablement élargi, en remplaçant
et la valeur absolue par un ensemble abstrait
et une distance
sur
.
Définition 3
Un espace métrique est un ensemble
sur lequel on a défini une distance, c’est-à-dire une application
vérifiant les conditions suivantes :
![]()
![]()
![]()
(1)
(2)
(3)
La condition (1) exprime la symétrie de l’application
.
La condition (2) est appelée inégalité triangulaire.
La condition (3) est appelée « condition de séparation ».
➡ Une suite
à termes dans
est dite convergente lorsqu’il existe un élément
de
tel que :
![Rendered by QuickLaTeX.com \[\boxed{\begin{array}{c}\forall\epsilon>0,\thinspace\exists N\in\mathbb{N};\thinspace\forall n\in\mathbb{N},\\n\geqslant N\Rightarrow d\left(u_{n},L\right)\leqslant\epsilon\end{array}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-d6112a5dfec12964a2e29138149f7f3c_l3.png)
➡ Elle est dite de Cauchy lorsque :
![Rendered by QuickLaTeX.com \[\boxed{\begin{array}{c}\forall\epsilon>0,\thinspace\exists N\in\mathbb{N};\thinspace\forall\left(p,q\right)\in\mathbb{N}^{2},\\\left(p\geqslant N\text{ et }q\geqslant N\right)\Rightarrow d\left(u_{p},u_{q}\right)\leqslant\epsilon\end{array}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-c93b8214278a0453c2212146fe5b3bcd_l3.png)
On peut montrer que :
![]()
Pour la réciproque de l’implication n° 2, c’est vite vu : il suffit de reprendre la suite réelle de terme général
Cette suite est bornée mais n’est pas de Cauchy, puisque l’écart entre
et
est égal à 2 lorsque
sont de parités contraires (cet écart ne devient donc pas arbitrairement petit à partir d’un certain rang).
Pour l’implication n° 1, c’est plus subtil. On ne pourra pas trouver de contre-exemple dans
… car, comme on l’a admis dans cet article : toute suite réelle de Cauchy est convergente !
Un exemple de suite de Cauchy divergente
Notons
l’espace vectoriel des applications continues de
dans
.
Munissons
de la « norme 1 » :
![]()
![Rendered by QuickLaTeX.com \[f_{n}\left(t\right)=\left\{ \begin{array}{cc}1 & \text{si }t\in\left[0,\frac{1}{2}\right]\\\\0 & \text{si }t\in\left[\frac{1}{2}+\frac{1}{n},1\right]\end{array}\right.\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-6d6afecd8d8b4fb67d657053305a4472_l3.png)

La suite
est de Cauchy car si
:
![Rendered by QuickLaTeX.com \[ \left\Vert f{q}-f_{p}\right\Vert =\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{p}}\,\left|f_{q}\left(t\right)-f_{p}\left(t\right)\right|\,dt\leqslant\frac{1}{p}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-be66ba72eb2af618bceac59e80f754bf_l3.png)
En effet, dans le cas contraire, en notant
la limite, on aurait :
![Rendered by QuickLaTeX.com \[\lim_{n\rightarrow\infty}\,\left(\int_{0}^{\frac{1}{2}}\,\left|f\left(t\right)-1\right|\,dt+\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}}\,\left|f\left(t\right)-f_{n}\left(t\right)\right|\,dt+\int_{\frac{1}{2}+\frac{1}{n}}^{1}\,\left|f\left(t\right)\right|\,dt\right)=0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-d9b6c78449a90927444d3dae567db405_l3.png)
![Rendered by QuickLaTeX.com \[\int_{0}^{\frac{1}{2}}\,\left|f\left(t\right)-1\right|\,dt=0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-4c80b28a25c57adc752733728433f9f7_l3.png)
(
) ![]()
![Rendered by QuickLaTeX.com \[\lim_{n\rightarrow\infty}\,\int_{\frac{1}{2}+\frac{1}{n}}^{1}\,\left|f\left(t\right)\right|\,dt=0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-e567edb93a2a3d4456473221afcd26d8_l3.png)
![Rendered by QuickLaTeX.com \[\int_{\frac{1}{2}}^{1}\,\left|f\left(t\right)\right|\,dt=0\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-76db892617c1e31ea3dbc2916a1e839e_l3.png)
(
) ![]()
Définition
L’espace métrique
est dit complet si toutes ses suites de Cauchy convergent.
Ainsi
est complet pour la distance usuelle (valeur absolue de la différence).
Tout
espace vectoriel normé
(
evn en abrégé) est, de façon naturelle, un espace métrique pour la distance induite par la norme :
On dit que
est un espace de Banach lorsqu’il est complet pour cette distance.

On peut montrer que tout
espace vectoriel de dimension finie, muni d’une norme quelconque, est un espace de Banach. Quant aux espaces normés de dimension infinie, certains sont complets et d’autre pas. Nous n’approfondirons pas davantage ce vaste sujet, du moins pas dans cet article.
6 – Le petit théorème de Baire
Dans cette section, on s’intéresse à un exemple de théorème qui repose principalement sur la complétude d’un espace métrique. Il s’agit d’une généralisation du célèbre théorème des segments emboîtés.
Théorème (des fermés emboîtés)
Soit
un espace métrique complet et soit
une suite décroissante de fermés non vides dont le diamètre tend vers 0.
Alors
est un singleton.
Ce résultat est aussi connu sous le nom de « petit théorème de Baire » (pour le grand théorème de Baire, voir un autre article … à paraître).
Preuve (cliquer pour déplier / replier)
On construit une suite
telle que
C’est possible puisque chaque
est non vide.
Comme la suite
est décroissante (pour l’inclusion), alors pour tout
la suite tronquée
est à termes dans
Il en résulte :
- d’une part, que pour tout
:
La suite![Rendered by QuickLaTeX.com \[q\geqslant p\Rightarrow d\left(x_{p},x_{q}\right)\leqslant\text{diam}\left(F_{p}\right)\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-60073c3f54118d61b23b2376aa253cc3_l3.png)
est donc de Cauchy. Comme
est complet, elle converge. Notons
sa limite. - d’autre part que, pour tout
:
puisque
est fermé.
Ainsi :
![Rendered by QuickLaTeX.com \[\lambda\in\bigcap_{p=0}^{\infty}F_{p}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-a947c50927bd3085c8e2a2a29e02f8c0_l3.png)
Pour finir, si
appartient à cette intersection, alors pour tout
:
![]()
7 – Convergence absolue
Le résultat suivant concernant les séries numériques est fondamental :
Théorème
Soit
une suite réelle. Si la série
converge, alors la série
converge aussi.
Lorsque la série
converge, la série
est dite absolument convergente.
Le théorème se reformule donc ainsi : toute série réelle absolument convergente est convergente.
Ce résultat est conséquence de la complétude de ![]()
Mais d’abord nous allons en donner une preuve qui, si l’on n’y prête pas garde, pourrait laisser croire le contraire.
Preuve 1 (cliquer pour déplier / replier)
Pour tout
:
![]()
Cependant :
![]()
Comme la série
converge, la principe de comparaison montre que la série
converge aussi.
Finalement, la série
converge, en tant que différence de deux séries convergentes.
Preuve 2 (cliquer pour déplier / replier)
Il s’agit de montrer que la suite de terme général
converge.
On sait, par hypothèse, que la suite de terme général
converge.
D’après l’inégalité triangulaire, pour tout
tel que
:

Or, étant donné
il existe
tel que pour tout
et tout
:
![]()
![]()
➡ La preuve 1 est indéniablement meilleure sur le plan de la concision. Elle présente, en outre, l’avantage d’être accessible, même si l’on ne dispose pas du critère de Cauchy.
Mais attention, cette preuve utilise le principe de comparaison pour les séries à termes positifs, qui repose sur le TLM, qui s’appuie à son tour sur le théorème de la borne supérieure, qui repose enfin sur le critère de Cauchy (ouf).
Donc, même si le critère de Cauchy n’apparaît pas explicitement dans la preuve 1, il est tout de même bien présent.
➡ Quant à la preuve 2, son intérêt est double :
- elle montre bien la connection entre suites de Cauchy et convergence absolue (sans rien camoufler),
- elle se généralise sans effort supplémentaire aux séries à termes dans un espace de Banach.
Revenons une dernière fois à l’exemple de la série 
Il suffit, pour justifier sa convergence d’écrire que :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N},\;\left|\frac{\cos\left(n^{2}\right)}{2^{n}}\right|\leqslant\frac{1}{2^{n}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-fed7eab24a24d809fd95c1aa0baa8b19_l3.png)
converge, le principe de comparaison assure que série
est absolument convergente, donc convergente.
Pour conclure cette section, ajoutons qu’étant donné un
-evn
les assertions :
est complet- dans
toute série ACV est convergente
sont en fait équivalentes. Nous avons établi ci-dessus l’implication
dans
. La preuve est en tout point identique dans un quelconque espace de Banach (on remplace simplement les valeurs absolues par des normes).
Il suffit donc de prouver que ![]()
Proposition
Pour qu’un
evn
soit complet, il suffit que toute série absolument convergente soit convergente.
Preuve (cliquer pour déplier / replier)
Notons
la norme en vigueur dans
et soit
une suite de Cauchy. On peut construire par récurrence une application
strictement croissante telle que :
![]()
Comme la série
converge, alors la série
est absolument convergente, donc convergente. Mais cela signifie que la suite de terme général :
![Rendered by QuickLaTeX.com \[\sum_{k=0}^{n-1}\left(u_{\varphi\left(k+1\right)}-u_{\varphi\left(k\right)}\right)=u_{\varphi\left(n\right)}-u_{\varphi\left(0\right)}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-edea31374a3053c15105cf5fca59f248_l3.png)
Etant donné
, il existe
tel que
![]()
![]()

Remarque
On a montré au passage que toute suite de Cauchy possédant une valeur d’adhérence est convergente.
8 – Théorème de la projection orthogonale
L’objectif de cette section est d’établir le :
Théorème
Soit
un espace de Hilbert réel (c’est-à-dire un espace vectoriel réel, muni d’un produit scalaire et complet pour la norme associée) et soit
une partie convexe, non vide et fermée de ![]()
Alors, pour tout
il existe un unique
tel que :
![]()
![]()
Comme
alors
est une partie non vide et minorée de
qui admet donc une borne inférieure, notée ![]()
Etant donné
on peut associer à tout
un vecteur
tel que :
(
) ![]()
![]()
![]()
![]()
![]()
![Rendered by QuickLaTeX.com \[\left\Vert a_{p}-a_{q}\right\Vert \leqslant\sqrt{\frac{4d}{p}+\frac{4d}{q}+\frac{d}{p^{2}}+\frac{d}{q^{2}}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-a6bc3aced6eddd499a58dd5a0012219a_l3.png)
![Rendered by QuickLaTeX.com \[\left\Vert a_{p}-a_{q}\right\Vert \leqslant\sqrt{\frac{10d}{p}}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-99cd05b90f2652ae478ce6c6c2688d05_l3.png)
En passant à la limite dans l’encadrement
on obtient (par continuité de la norme) : ![]()
Prouvons l’unicité. Soit
tel que
Toujours avec la formule du parallélogramme, il vient :
![]()
Passons pour finir à la caractérisation de
Pour tout
et pour tout
le vecteur
appartient à
et donc :
![]()
![]()
![]()
(
) ![]()

Annexe – Preuve du théorème de la borne supérieure
On commence par définir la notion de couple d’ensembles adjacents.
Définition
Soient
des parties non vides de ![]()
On dit que
est un couple d’ensembles adjacents lorsque :
(1) ![]()
(2) ![]()
Lemme
Si
est un couple d’ensembles adjacents, alors il existe un unique
tel que :
![]()
Preuve (cliquer pour déplier / replier)
Commençons par l’unicité.
S’il existait deux réels
ayant la propriété annoncée, on aurait pour tout
:
ce qui est en contradiction avec (2).
Passons à l’existence de ![]()
D’après (2), il existe pour tout
un couple
tel que
(3) ![]()
![]()
![]()
![]()
La suite
est donc de Cauchy. Notons
sa limite.
D’après (3), la suite
converge aussi vers ![]()
Soit
comme
pour tout
il vient en passant à la limite : ![]()
On voit de même que pour tout
![]()
On est maintenant en mesure d’établir le :
Théorème (de la borne supérieure)
Toute partie non vide et majorée de
possède une borne supérieure.
Preuve (cliquer pour déplier / replier)
Soit
une partie de
, non vide et majorée. Notons
l’ensemble de ses majorants :
![]()
Fixons
et
Soit
Comme
on voit déjà que
D’autre part, si
alors
et donc :
![]()
![]()
![]()
Vos questions ou remarques sont les bienvenues. Vous pouvez laisser un commentaire ci-dessous ou bien passer par le formulaire de contact.

Ajout dans mon message précédent:
(…) certains en « déduisent » de façon erronée (…)
petite remarque pour un choix ( legerement 🙂 ) plus passionnant dans la section point fixe de Picard. Iterer sur une fonction (meme continue) ne garantit pas la convergence d’une suite recurrente. Exemple t -> 1-t sur [0 1/2[ U ]1/2 1] qui donne en effet deux valeurs selon parite’ de n… Et comme indique’, la convergence (ou pas) peut dependre de la condition initiale s. En reprenant la meme fonction avec s = 1/2 on a alors une suite constante (moins ennuyante que t -> t) donc convergente. Cela montre la convergence ou divergence de la meme fonction selon choix initial.
Serais-je à nouveau confus ?
Dans la section TLM : « Par exemple, la suite de terme général
converge vers 0, mais n’est monotone à partir d’aucun rang ».
Monotone APCR ? Elle semble oscillante indéfiniment. D’accord sur sa limite égale à zéro.
Il est écrit que cette suite n’est monotone à partir d’aucun rang, ce qui signifie exactement qu’elle n’est PAS monotone APCR. Nous sommes donc bien d’accord 🙂
correction de mon nom.
OMG! je perds aussi mo focus en lisant en Franc,ais… Je commenc,ais a` perdre mon latin!
Merci bien de votre reponse… j’entends bien, dois me reconcentrer sur cette section. Y a t’il une demonstration sur Math-OS de la reciproque du critere de Cauchy? Je suis tres curieux de la comprendre. Intuitivement, cela parait evident, juste par un trace’ d’une suite qui converge, on peut comprendre pourquoi une suite de Cauchy converge sans en connaitre la limite.
Non, il n’y a pas de preuve de cette implication sur Math-OS. Ce n’est facile d’accès car il faut pour cela construire, d’une façon ou d’une autre, le corps des réels. Par exemple comme le quotient de l’anneau des suites de Cauchy de rationnels par l’idéal formé de celles qui convergent vers 0. Et seulement ensuite, on peut montrer la complétude de
. Je vous renvoie par exemple au livre : Traité de mathématiques spéciales, de Ramis, Deschamps & Odoux, Tome 3, chapitre 1.
Bonjour – pour le critere de Cauchy, (reciproque de toute suite convergente est « de Cauchy »). Si on choisit L la limite de U comme etant le min_(|Up|, |Uq|) et le terme de rang k = (p ou q), Uk = Max_(|Up|, |Uq|). N’a t’on pas prouve’ la convergence de U vers L? Cela me parait trop simple et je me pose la question quant a` l’unicite de ce L. Quoique p et q etant fixe’s, L serait ainsi unique?
Il faut considerer la monotonie de U. e.g. si U est croissante, on choisit Max_(|Up|, |Uq|) = L (la limite de U) et Uk = min_(|Up|, |Uq|) et pour le cas precedent si U est decroissante.
Bonsoir,
Merci pour cet article.
Juste deux petites remarques (clairement 😊) non essentielles:
1) Au tout début de la partie 4, on peut ajouter « strictement positif » à la place de « positif »;
2) Parfois, une suite de Cauchy est définie de façon totalement équivalente à la définition de l’article, mais avec « n+p et n » en lieu et place de « p et q ». Il me semble qu’à partir de cette « variante », certains en déduisent le résultat faux que vous dénoncez dans votre aparté « confusion fréquente » de la partie 2. Je dis cela juste au cas où connaître la source probable de leur erreur, aiderait certains à ne plus la commettre !
Bien à vous.
Bien vu pour le _strictement_ positif ! En effet, on ne risque pas de converger vers 1 en itérant la fonction racine carrée à partir de 0 🙂
J’ai fait la rectification qui s’imposait.
Je crains que quelque chose ne vous ait échappé. Qu’entendez-vous par « le min de
et
» ? La limite d’une suite, si elle existe, ne doit dépendre de RIEN d’autre que de cette suite … Et pour une suite à termes négatifs, ce nombre L serait donc positif ou nul ? Cela paraît difficile. En outre, vous semblez suggérer qu’une suite réelle doive nécessairement être soit croissante soit décroissante … C’est loin d’être vrai.