Lettre I
IDENTITÉ (application)
Etant donné un ensemble non vide
on appelle identité de
(ou application identique de
l’application
![]()
Le graphe de
est la diagonale de
c’est-à-dire l’ensemble ![]()
D’évidence,
est une bijection qui coïncide avec sa bijection réciproque. Plus généralement, toute application
telle que
est bijective et coïncide avec sa réciproque (une telle application est appelée une involution).
Si
sont deux ensembles non vides, alors pour toute application
:
![]()
![]()
En algèbre linéaire : si
est un espace vectoriel sur un corps
les endomorphismes de la forme
(pour
sont appelés homothéties. Ils constituent le centre de la
algèbre ![]()
IDENTITÉ REMARQUABLE
On entend généralement par identité remarquable une égalité faisant intervenir une ou plusieurs variable(s), qui est vraie pour toute(s) valeur(s) de la (des) variable(s).
Les exemples les plus célèbres sont certainement :
(1) ![]()
(2) ![]()
Cette vidéo aborde de manière élémentaire la question des identités remarquables.
La relation (1) se généralise en la formule du binôme :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N},\forall\left(a,b\right)\in\mathbb{C}^{2},\thinspace\left(a+b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-1f8b1ea977a5ed4d7480d6eb1a7f394d_l3.png)
La relation (2) se généralise sous la forme :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N}-\left\{ 0,1\right\} ,\forall\left(a,b\right)\in\mathbb{C}^{2},\thinspace a^{n}-b^{n}=\left(a-b\right)\sum_{k=1}^{n}a^{n-k}b^{k-1}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-c73bd46f1a641ab8979e76ae6d743ec6_l3.png)
Voici quelques identités remarquables, plus « exotiques » :
Exemple 1
Pour tout
:
![]()
Exemple 2
Pour tout
:
![]()
![]()
![Rendered by QuickLaTeX.com \begin{eqnarray*} \left(a+bj+cj^{2}\right)\left(a+bj^{2}+cj\right) & = & a^{2}+b^{2}+c^{2}-ab-ac-bc\\ & = & \frac{1}{2}\left[\left(a-b\right)^{2}+\left(b-c\right)^{2}+\left(c-a\right)^{2}\right]\\ & \geqslant & 0\end{eqnarray*}](https://math-os.com/wp-content/ql-cache/quicklatex.com-8c8ec6357c65e04288bdb6cb1daa4d3c_l3.png)
Exemple 3
Pour tout
l’on pose :
![]()
![]()
Ceci montre notamment que, pour
réels :
avec égalité si, et seulement si, deux au moins des trois nombres
sont nuls.
On entend généralement par identité remarquable une égalité faisant intervenir une ou plusieurs variable(s), qui est vraie pour toute(s) valeur(s) de la (des) variable(s).
Les exemples les plus célèbres sont certainement :
(1) ![]()
(2) ![]()
Cette vidéo aborde de manière élémentaire la question des identités remarquables.
La relation (1) se généralise en la formule du binôme :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N},\forall\left(a,b\right)\in\mathbb{C}^{2},\thinspace\left(a+b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-1f8b1ea977a5ed4d7480d6eb1a7f394d_l3.png)
La relation (2) se généralise sous la forme :
![Rendered by QuickLaTeX.com \[\forall n\in\mathbb{N}-\left\{ 0,1\right\} ,\forall\left(a,b\right)\in\mathbb{C}^{2},\thinspace a^{n}-b^{n}=\left(a-b\right)\sum_{k=1}^{n}a^{n-k}b^{k-1}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-c73bd46f1a641ab8979e76ae6d743ec6_l3.png)
Voici quelques identités remarquables, plus « exotiques » :
Exemple 1
Pour tout
:
![]()
Exemple 2
Pour tout
:
![]()
![]()
![Rendered by QuickLaTeX.com \begin{eqnarray*} \left(a+bj+cj^{2}\right)\left(a+bj^{2}+cj\right) & = & a^{2}+b^{2}+c^{2}-ab-ac-bc\\ & = & \frac{1}{2}\left[\left(a-b\right)^{2}+\left(b-c\right)^{2}+\left(c-a\right)^{2}\right]\\ & \geqslant & 0\end{eqnarray*}](https://math-os.com/wp-content/ql-cache/quicklatex.com-8c8ec6357c65e04288bdb6cb1daa4d3c_l3.png)
Exemple 3
Pour tout
l’on pose :
![]()
![]()
Ceci montre notamment que, pour
réels :
avec égalité si, et seulement si, deux au moins des trois nombres
sont nuls.
Exemple 4
Pour tout couple
de réels positifs :
![]()
Elle fait aussi l’objet du challenge n° 67
INDICATRICE (fonction)
Etant donnés un ensemble
et une partie
de
, la fonction indicatrice de
est l’application :
![]()
Exemples
Si
est une partie finie d’un ensemble
, alors
![]()
La fonction indicatrice de
est une application discontinue en tout point.
Si
est un intervalle de
, de longueur
, alors
est une densité de probabilité pour la loi uniforme sur
.
Si
est un espace probabilisé et
un événement, la variable aléatoire indicatrice de
vérifie
.
INTÈGRE (anneau)
Définition
Un anneau
est dit intègre s’il est non nul, commutatif et si de plus :
![]()

Cette célèbre phrase, entendue dans les cours d’enseignement secondaire, exprime l’intégrité de l’anneau des nombres réels.
En fait, les nombres réels forment un corps et tout corps est un anneau intègre (mais la réciproque est fausse, comme on le voit avec l’anneau
par exemple).
Comme exemples d’anneaux non intègres, citons :
- les anneaux quotients
pour
, non premier. - l’anneau
. - l’anneau des applications continues de
dans
.
On peut montrer que tout anneau intègre fini est un corps.
Pour un anneau commutatif
, l’intégrité de
équivaut à celle de l’anneau de polynômes
.
Pour finir, signalons l’important :
Théorème
Pour tout anneau intègre
, la relation
définie sur
par :
![]()
On note
la classe d’équivalence de
.
En posant :
![]()
En outre l’application
est un morphisme injectif d’anneaux, ce qui permet d’identifier
à un sous-anneau de
.
est appelé le corps des fractions de
. C’est ainsi que l’on construit
(corps des nombres rationnels) à partir de
(anneau des entiers) ou encore
(corps des fractions rationnelles) à partir de
(anneau des polynômes).
INTERMÉDIAIRES (théorème des valeurs)
Si l’on considère un intervalle I non trivial ainsi qu’une application
continue, alors
est un intervalle (au sujet de la notation
et de la notion d’image directe, voir cet article).
Ceci signifie que pour tout couple de réels atteints par
chaque réel compris entre ces deux-là est aussi atteint par
Un énoncé équivalent est le suivant :
Théorème des valeurs intermédiaires
Si
est un intervalle non trivial, si
est continue et s’il existe
vérifiant
alors il existe
tel que ![]()
La condition
signifie que les réels
et
sont non nuls et de signes contraires.
Ce que dit ce théorème est assez intuitif : si par exemple la température est passée de +5°C hier soir à -2°C ce matin, alors il y a certainement eut un moment (ou plusieurs …), dans la nuit, où la température était exactement de 0°C. A condition bien sûr qu’on admette que la température varie « continûment » …

Une illustration amusante du TVI (théorème des valeurs intermédiaires) est la suivante : si un cycliste parcourt une distance de 20 km en 2 heures (selon un mouvement non supposé uniforme : il peut accélérer, ralentir, s’arrêter pour faire pipi …), alors il existe à coup sûr un intervalle de temps de 1 heure au cours duquel il a parcouru exactement 10 km.
Autre exemple : étant donné un cerceau métallique, chauffé de manière non supposée uniforme, il existe forcément deux points diamétralement opposés ou règne la même température.
Plus sérieusement, le TVI permet d’affirmer l’existence de solutions à certaines équations. Par exemple, l’application
possède certainement un point fixe. En effet, l’équation
équivaut à
or l’application
est continue et prend des valeurs de signes opposés :
![]()

Il se trouve en outre que
est strictement croissante (donc injective), ce qui fait de
l’unique point fixe de ![]()
A un niveau plus avancé, le TVI se généralise comme suit :
Théorème
Soient
des espaces topologiques et
une application continue. Si
est une partie connexe de
alors
est une partie connexe de ![]()
Il s’agit bien d’une généralisation, car les parties connexes de
sont les intervalles.
INTERVALLE
Définition
Un intervalle de
est une partie
de
vérifiant la condition :
![]()
On classe les intervalles en sous-catégories (ci-dessous,
sont tels que
:
- la partie vide :
![Rendered by QuickLaTeX.com \[\emptyset\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-d6ba46edb8fb61f6691beaf5ce422172_l3.png)
- les singletons :
![Rendered by QuickLaTeX.com \[\left\{ a\right\}\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-62517c15bdf74d75f2aa37a44f78b55f_l3.png)
- les segments non triviaux :
![Rendered by QuickLaTeX.com \[\left[a,b\right]\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-09605dc258196800a69c7b347e2a9b5d_l3.png)
- les intervalles semi-ouverts bornés :
![Rendered by QuickLaTeX.com \[\left]a,b\right]\quad\text{ou bien}\quad\left[a,b\right[\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-697071dab4d10f27ba986169667b7b5a_l3.png)
- les intervalles ouverts bornés :
![Rendered by QuickLaTeX.com \[\left]a,b\right[\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-088b46652dba07f18ef7bbe334b95a65_l3.png)
- les intervalles ouverts non bornés autres que
:![Rendered by QuickLaTeX.com \[\left]-\infty,a\right[\quad\text{ou bien}\quad\left]a,+\infty\right[\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-b862f10e018efd32be26da6147e6959e_l3.png)
- les intervalles fermés non bornés autres que
:![Rendered by QuickLaTeX.com \[\left]-\infty,a\right]\quad\text{ou bien}\quad\left[a,+\infty\right[\]](https://math-os.com/wp-content/ql-cache/quicklatex.com-3a2e04f9524dd7d4c525fd7c392a0667_l3.png)

La longueur d’un intervalle borné non vide
est : ![]()
Par convention
et
si
est non borné.
Un intervalle est qualifié de trivial s’il est vide ou réduit à un singleton. Cela revient à dire qu’il est de longueur nulle.
Les intervalles sont présents dans les énoncés d’importants théorèmes d’analyse réelle. Par exemple :
- Si
est un intervalle non trivial et
est continue et prend des valeurs positives et des valeurs négatives, alors
s’annule. - Si
est un intervalle non trivial et si
est continue et injective, alors
est strictement monotone. - Si
est un segment (non trivial) et
continue, alors
est bornée et atteint ses bornes.
Remarque
La notion de segment peut-être étendue à un quelconque
espace vectoriel
Etant donnés deux vecteurs
:
![]()
INVOLUTION
Définition
Etant donné un ensemble non vide
on appelle involution de
toute application
vérifiant ![]()
Une telle application est nécessairement bijective.
Une involution est parfois appelée une symétrie (notamment en algèbre linéaire, lorsqu’il s’agit d’un endomorphisme involutif).
Exemple 1
Parmi les applications affines
les involutions sont :
- d’une part
(qui correspond à
et 
- et d’autre part celles associées à
(et
quelconque)
Exemple 2
L’application
est une involution.
Exemple 3
La seule involution croissante de
est ![]()
Exemple 4
Si
est un
espace vectoriel de dimension finie et si
est un endomorphisme involutif de
alors
est diagonalisable et
est un projecteur.
Exemple 5
Dans le groupe symétrique
les transpositions sont des involutions mais ce ne sont pas les seules. Si l’on note
le nombre d’involutions dans
alors pour tout
:
![]()

