Challenge 49 : caractériser les ensembles infinis
Challenge 47 du blog Math-OS - En notant T(n) le n-ème nombre triangulaire, il s'agit d'établir l'existence d'une infinité de triplets (a,b,c) tels que T(a) + T(b) = T(c).
Challenge 47 du blog Math-OS - En notant T(n) le n-ème nombre triangulaire, il s'agit d'établir l'existence d'une infinité de triplets (a,b,c) tels que T(a) + T(b) = T(c).
Challenge n° 38 de Math-OS - Des applications surjectives de R dans lui-même, ça court les rues ... mais des fortement surjectives ? Est-ce que ça existe ?
Le théorème de Cantor-Bernstein-Schröder affirme que l'existence d'une injection de A vers B et d'une injection de B vers A entraînent l'équipotence des ensembles A et B. On donne, dans cet article, une preuve classique et détaillée de ce résultat, ainsi que des exemples d'application.
Les concepts d'image directe et d'image réciproque apparaissent très vite, dès que l'on commence à se familiariser avec les ensembles et les applications. Ils sont très généraux et interviennent de ce fait dans des contextes très divers ! Il est donc impératif de les maîtriser au plus tôt et j'espère que cet article pourra y contribuer :)
Neuf exercices de difficulté graduée sur les notions d'application, injection, surjection et bijection (fiche n° 1)