Indications pour démarrer les exercices sur les suites numériques (fiche 02).
Cliquer ici pour accéder aux énoncés.


Une telle suite doit être constante. Tâchez de le prouver rigoureusement … ce n’est pas très difficile.

Pensez à la formule de duplication du sinus : ![]()

Faites un dessin … ou mieux : utiliser le programme Live-Iteration pour vous faire une idée !

Pour commencer, examinez le signe de
puis étudier le sens de variation de chacune des deux suites.

L’encadrement
valable pour tout
doit permettre de montrer que
pour tout ![]()

Utiliser le théorème des valeurs intermédiaires pour traiter l’implication contraposée.

En supposant le contraire, on peut construire une suite extraite
telle que :
![]()

Comme cette suite est à termes dans
on sait déjà que l’ensemble de ses valeurs d’adhérence est inclus dans
(pourquoi ?).
On peut établir l’inclusion réciproque, en se donnant
et en construisant explicitement une suite extraite qui converge vers ![]()

Etant donnée une suite réelle
considérer l’ensemble :
![]()
