Indications pour démarrer les exercices sur la notion d’éléments propres
pour un endomorphisme (fiche 01).
Cliquer ici pour accéder aux énoncés.

Vérifier que la matrice possède deux valeurs propres distinctes : 2 et 3.
Pourquoi peut-on en déduire qu’elle est diagonalisable dans ?

Rappel : pour qu’un endomorphisme d’un espace vectoriel de dimension finie soit diagonalisable, il est nécessaire et suffisant que son polynôme caractéristique soit scindé dans
et que, pour chaque valeur propre, la multiplicité de celle-ci dans le polynôme caractéristique soit égale à la dimension du sev propre associé.
Ensuite, pour calculer les puissances de une méthode générale repose sur la division euclidienne de
par un polynôme annulateur de
on prendra ici son polynôme caractéristique :

Que peut-on dire de ? Que peut-on en déduire quant aux valeurs propres de
?

Si alors

Si vérifie
alors
et
commutent.
Il en résulte que tout sev propre de est stable par

Une piste : si est un polynôme annulateur de
il est facile de voir que
est aussi annulateur de

Essayer, quitte à restreindre et
à un sev bien choisi, de se ramener au cas où l’un des deux endomorphismes est une homothétie.

Le cas où possède des valeurs propres est facile. Et s’il n’en possède pas, on peut considérer un polynôme annulateur et le décomposer en produit de facteurs irréductibles dans
Au fait … quels sont les éléments irréductibles de l’anneau ?

Au lieu de raisonner matriciellement, on peut considérer l’endomorphisme canoniquement associé à
Si est diagonalisable, alors
est la somme directe des sev propres de
Si
est nilpotent, alors il existe
tel que
pour tout
Que devient cette égalité si
est un vecteur propre ? Que peut-on en déduire concernant le polynôme
?