Solution pour le challenge 85
Considérons une bijection continue admettant
pour limite en
et montrons que sa réciproque possède la même propriété.
Comme est continue (sur un intervalle) et injective, elle est strictement monotone. Et vue sa limite en
elle est croissante. Il s’ensuit que pour tout
:
Maintenant, montrons que cette conclusion n’est pas maintenue sans l’hypothèse de continuité.
Commençons par construire une bijection vérifiant :



l’ensemble des entiers strictement négatifs
l’ensemble des entiers naturels impairs
Soit une bijection (
et
sont équipotents en tant que parties infinies de
Considérons l’application :













Pour consulter l’énoncé, c’est ici