Skip to content
Math-OS
  • Accueil
  • Pourquoi ce blog ?
  • Articles
    • Math-OS Live !
    • Articles de vulgarisation
    • Articles Niveau Lycée
    • Articles Niveau Supérieur
    • Liste alphabétique des articles
    • Lexique Mathématique
  • S’entraîner
    • Exercices
    • Challenges
  • Q & R
  • QUIZ!
  • Vidéos
  • Contact
Rechercher sur ce site
Menu Fermer
  • Accueil
  • Pourquoi ce blog ?
  • Articles
    • Math-OS Live !
    • Articles de vulgarisation
    • Articles Niveau Lycée
    • Articles Niveau Supérieur
    • Liste alphabétique des articles
    • Lexique Mathématique
  • S’entraîner
    • Exercices
    • Challenges
  • Q & R
  • QUIZ!
  • Vidéos
  • Contact

Le théorème CISM

  • Auteur/autrice de la publication :René Adad
  • Post published:10 août 2024
  • Post category:Articles Mathématiques/Articles Niveau Supérieur
  • Post comments:0 commentaire

Toute application continue et injective sur un intervalle de R, à valeurs dans R, se doit d'être strictement monotone. Deux preuves et quelques applications.

Continuer la lectureLe théorème CISM

Derniers ajouts

Pour savoir quels sont les derniers documents mis en ligne, pensez à consulter de temps en temps la page d'accueil !

Abonnez-vous par e-mail.

Saisissez votre adresse e-mail et recevez une notification pour chaque nouvel article !

Rejoignez les 329 autres abonnés

Utiliser le Lexique Math-OS pour examiner la définition d’un terme mathématique

Articles récents

  • Challenge 90 : Sommes de nombres de module 1
  • Challenge 89 : L’hypoténuse vue comme une moyenne géométrique
  • Challenge 88 : Une drôle d’équation fonctionnelle
  • Exercices de calcul intégral – 05
  • Sommes de Riemann à tout-va !
  • Le théorème CISM
  • Challenge 87 : Une anti-involution ?
  • Bêta et Gamma
  • Challenge 86 : une suite pas si monotone !
  • Challenge 85 : limite en l’infini pour une réciproque
  • Challenge 84 : Les nombres de Fermat sont impuissants
  • Challenge 83 : progression géométrique
  • Moyennes arithmétique et géométrique
  • Un calcul de l’intégrale de Dirichlet
  • Deux formules de moyenne pour les intégrales