Challenge 31 : Majoration d’une somme de carrés parfaits

icone-challenge-math-OS

Soit k\in\mathbb{N}^{\star} et soient n_{1},\cdots,n_{k}\in\mathbb{N}^{\star}.

On note {\displaystyle n=\sum_{i=1}^{k}n_{i}}. Montrer que :

    \[ \sum_{i=1}^{k}n_{i}^{2}\leqslant\left(n-k+1\right)^{2}+k-1\]


Une solution est disponible ici

Partager cet article
  •  
  •  
  •  
  •  

Cet article a 2 commentaires

  1. That is very attention-grabbing, You are an excessively skilled blogger.
    I have joined your feed and stay up for looking for more of your great post.
    Additionally, I’ve shared your web site in my social networks

    1. Thank you so much. Hoping that all this will be useful to you !
      And thanks for sharing 🙂

Laisser un commentaire

Fermer le menu